

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2021

CC6-MATHEMATICS

GROUP THEORY-I

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.		Answer any <i>four</i> questions:	3×4 = 12
	(a)	Describe all the permutations on the set $\{x, y, z\}$ and find their respective orders.	3
	(b)	Find all homomorphisms from the group $(\mathbb{Z}_6, +)$ to $(\mathbb{Z}_4, +)$.	3
	(c)	Find the number of elements of order 5 in the group $(\mathbb{Z}_{30}, +)$	3
	(d)	Let <i>H</i> be a subgroup of the group <i>G</i> . Show that $\{aH : a \in G\}$ forms a partition of <i>G</i> .	3
	(e)	"Commutativity of a factor group of the group G does not imply commutativity of G ". Justify the statement.	3
	(f)	Prove that Cosets of a subgroups of the group are mutually exclusive and exhaustive.	3
GROUP-B			
2.		Answer any <i>four</i> questions:	$6 \times 4 = 24$
	(a)	If H be a subgroup of a cyclic group G, then the quotient group G/H is cyclic.	6
		Is converse of this result true? Justify your answer.	
	(b)	Show that the multiplicative group \mathbb{R}^* of all non-zero real numbers is the internal direct product of the set of all positive real numbers \mathbb{R}^+ and the set $T = \{1, -1\}$.	4+2

Also find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.

(c) Let $G = S_3$ and G' be the multiplicative group $\{1, -1\}$. Let $\phi: G \to G'$ is defined 3+2+1 by

 $\phi(a) = 1$ if a is an even permutation

= -1 if *a* is an odd permutation.

Show that ϕ is an epimorphism. Also find ker ϕ and hence determine a normal subgroup of S_3 .

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC6/2021

- (d) Using group theory prove that (1320)⁶ ≡ 1(mod 7).
 (e) Find all cosets of the subgroup ⟨4⟩ of the group Z₁₂.
 (f) (i) Let φ: (G, ∘) → (G', *) be a group homomorphism. Prove that for a ∈ G, φ(aⁿ) = {φ(a)}ⁿ where n ∈ Z.
 - (ii) Let G and G' be two groups with o(G) = 10 and o(G') = 6. Does there exists 3 a homomorphism of G onto G'? Justify your answer.

6

6

3

6

GROUP-C

Answer any *two* questions $12 \times 2 = 24$ 3. (a) Let G be a group of all non-zero complex numbers under multiplication and $F\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$ be a group under matrix multiplication. Show that $G \cong F$. (b) Let $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. Find the solution of ax = b in S_3 .

- 4. (a) Let (G, *) be a group and $a * b * a^{-1} = b^2$ for $a, b \in G$. If o(a) = 3 and $b \neq e_G$, 2 then find o(b).
 - (b) Prove that a cyclic group of finite order *n* has one and only one subgroup of order 5 *d* for every positive divisor *d* of *n*.
 - (c) Show that any two left cosets of a subgroup *H* of the group *G* are either identical 5 or they have no common element.
- 5. (a) Let *H* and *K* be two finite cyclic groups of order *m* and *n* respectively. Prove that the direct product $H \times K$ is cyclic group iff gcd(m, n) = 1.
 - (b) Let *H* be a subgroup of the group *G* and [G:H]=2. Show that for every $x \in G$, $x^2 \in H$.
 - (c) Let G be a non-abelian group of order p^3 , where p is a prime number. Find the 3 order of centre of the group G.
- 6. (a) Let *H* and *K* be two normal subgroups of the group *G* such that $H \cap K = \{e\}$. 6 Prove that hk = kh for all $h \in H$ and $k \in K$.

-×-

(b) Show that \mathbb{Z}_9 is not a homomorphic image of \mathbb{Z}_{16} .