

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

CC6-MATHEMATICS

GROUP THEORY-I

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any four questions: $3 \times 4=12$
(a) Describe all the permutations on the set $\{x, y, z\}$ and find their respective orders. 3
(b) Find all homomorphisms from the group $\left(\mathbb{Z}_{6},+\right)$ to $\left(\mathbb{Z}_{4},+\right)$. 3
(c) Find the number of elements of order 5 in the group $\left(\mathbb{Z}_{30},+\right)$
(d) Let H be a subgroup of the group G. Show that $\{a H: a \in G\}$ forms a partition of 3 G.
(e) "Commutativity of a factor group of the group G does not imply commutativity of G". Justify the statement.
(f) Prove that Cosets of a subgroups of the group are mutually exclusive and exhaustive.

GROUP-B

2. Answer any four questions:
(a) If H be a subgroup of a cyclic group G, then the quotient group G / H is cyclic.

Is converse of this result true? Justify your answer.
(b) Show that the multiplicative group \mathbb{R}^{*} of all non-zero real numbers is the internal direct product of the set of all positive real numbers \mathbb{R}^{+}and the set $T=\{1,-1\}$.

Also find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_{5}$.
(c) Let $G=S_{3}$ and G^{\prime} be the multiplicative group $\{1,-1\}$. Let $\phi: G \rightarrow G^{\prime}$ is defined by

$$
\begin{aligned}
\phi(a) & =1 \text { if } a \text { is an even permutation } \\
& =-1 \text { if } a \text { is an odd permutation. }
\end{aligned}
$$

Show that ϕ is an epimorphism. Also find $\operatorname{ker} \phi$ and hence determine a normal subgroup of S_{3}.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC6/2021

(d) Using group theory prove that $(1320)^{6} \equiv 1(\bmod 7)$.
(e) Find all cosets of the subgroup $\langle 4\rangle$ of the group \mathbb{Z}_{12}.
(f) (i) Let $\varphi:(G, \circ) \rightarrow\left(G^{\prime}, *\right)$ be a group homomorphism. Prove that for $a \in G$, $\varphi\left(a^{n}\right)=\{\varphi(a)\}^{n}$ where $n \in \mathbb{Z}$.
(ii) Let G and G^{\prime} be two groups with $o(G)=10$ and $o\left(G^{\prime}\right)=6$. Does there exists a homomorphism of G onto G^{\prime} ? Justify your answer.

GROUP-C

Answer any two questions

3. (a) Let G be a group of all non-zero complex numbers under multiplication and $F\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a, b \in \mathbb{R}, a^{2}+b^{2} \neq 0\right\}$ be a group under matrix multiplication. Show that $G \cong F$.
(b) Let $a=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), b=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$. Find the solution of $a x=b$ in S_{3}.
4. (a) Let $(G, *)$ be a group and $a * b * a^{-1}=b^{2}$ for $a, b \in G$. If $o(a)=3$ and $b \neq e_{G}$, then find $o(b)$.
(b) Prove that a cyclic group of finite order n has one and only one subgroup of order d for every positive divisor d of n.
(c) Show that any two left cosets of a subgroup H of the group G are either identical or they have no common element.
5. (a) Let H and K be two finite cyclic groups of order m and n respectively. Prove that the direct product $H \times K$ is cyclic group iff $\operatorname{gcd}(m, n)=1$.
(b) Let H be a subgroup of the group G and $[G: H]=2$. Show that for every $x \in G$, $x^{2} \in H$.
(c) Let G be a non-abelian group of order p^{3}, where p is a prime number. Find the order of centre of the group G.
6. (a) Let H and K be two normal subgroups of the group G such that $H \cap K=\{e\}$. Prove that $h k=k h$ for all $h \in H$ and $k \in K$.
(b) Show that \mathbb{Z}_{9} is not a homomorphic image of \mathbb{Z}_{16}.
